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Abstract These two concepts, maturity in chemistry and rationality in group theory
were discovered by a chemist, Fujita. In the present study, we introduce a new approach
to maturity and immaturity of simple groups, using the deep theorem (Feit and Seitz
in Ill J Math 33:101–131, 1988). Additionally, we prove that 1,3,5-trimethyl-2,4,6-
trinitrobenzene are always unmatured and tetra platinum(II) with point group D2n ,
dihedral group of order 2n, is unmatured if n �= 1, 2, 3, 4, 6. Also, we compute
integer-valued characters of the simple sporadic group Ly.

Keywords Rational group · Integer-valued characters · Matured groups ·
Dominant classes · Markaracter · Lyons group

1 Introduction

In recent years, the problems of group theory have attracted the wide attention of
researchers in mathematics, physics and chemistry. Many problems of the computa-
tional group theory have been solved, such as the classification of simple groups, the
symmetry of molecules, etc. It is not only on the property of finite group, but also
its wide-ranging connection with many applied sciences, such as nanoscience, chem-
ical physics and quantum chemistry, biomedical are areas of active research in group
theory, for instant see [4,6–8,10,11].
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The matured and unmatured groups were introduced by famous chemist Fujita.
He used character theory of finite groups in calculating mark table and Q-conjugacy
character. They are applied to combinatorics enumeration of isomers of molecules.

By the Theorem 2.2 in this paper, Lyons group of order 51765179004000000 is an
unmatured group. The motivation for this study is outlined in [6,11] and [16], and the
reader is encouraged to consult the papers [1,12,13] and [14] for background material
as well as basic computational techniques.

We prepared the article as follows: In Sect. 2, we introduced some necessary con-
cepts, such as the maturity, Q-group and Q-conjugacy character of a finite group. In
Sect. 3, we provided Examples 3.4 and 3.5 of unmatured groups and computed the
dominant classes and Q-conjugacy characters for the Lyons group.

2 Preliminaries

Throughout this paper we adopt the same notations as in ([6,11]). We will use the
ATLAS of finite groups notations [1] for conjugacy classes. Thus, nx, n is an integer
and x = a, b, c, . . . denote conjugacy classes of G of elements of order n.

Before stating discussion, we will mention some well-known results about Q-
conjugation, where Q denotes the field of rational numbers. An alternative character-
ization of Q-conjugation is the following concepts which can be found in [3–5,7,9].

A dominant class is defined as a disjoint union of conjugacy classes that correspond
to the same cyclic subgroup, which is selected as a representative of conjugate cyclic
subgroups. Let G be a finite group and h1, h2 ∈ G. We say h1 and h2 are Q-conjugate
if t ∈ G exists such that t−1 < h1 > t =< h2 > which is an equivalence relation on
group G and generates equivalence classes that are called dominant classes. The group
G is partitioned in to dominant classes as follows: G = K1+K2 +...+Ks in which Ki

corresponding to the cyclic (dominant) subgroup Gi selected from a non-redundant
set of cyclic subgroups of G denoted by SC SG.

Suppose C be a m × m matrix of the character table for an arbitrary finite group
G. Then, C is transformed into a more concise form called the Q-conjugacy character
table denoted by CQ

G containing integer-valued characters. According to theorem 4 in

[6], the dimension of a Q-conjugacy character table, CQ
G is equal to its corresponding

markaracter table, i.e., CQ
G is an n×n-matrix where n is the number of dominant classes

or equivalently the number of SC SG. If m = n, then C = CQ i.e. G is a maturated
group. Otherwise, n < m (is called unmaturated group) for each Gi ∈ SCGG
(the corresponding dominant class Ki ) set ti = m(Gi )/ϕ(|Gi |) where m(Gi ) =
|NG(Gi )|/|CG(Gi )| (called the maturity discriminant), where the symbols NG(Gi )

denotes the normalizer of Gi in G and CG(Gi ) is centralizer Gi in G, also, ϕ is the
Euler function. If ti = 1 then, Ki is exactly a conjugacy class so there is no reduction
in row and column of C but if ti > 1 then Ki is a union of ti -conjugacy classes of G
(i.e. reduction in column) therefore the sum of ti rows of irreducible characters via the
same degree in C (reduction in rows) gives us a reducible character which is called
the Q-conjugacy character.

Now, we need to recall some concepts of rational group theory. Let G be a finite
group and χ be a complex character of G. If for every x ∈ G we have χ(x) ∈ Q, by
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definition, χ is called rational character. A finite group G is called a rational group
or a Q-group, if all irreducible complex characters of G are rational. For example,
the symmetric group Sn and the Weyl groups of the classical complex Lie algebras
are rational groups (for more details see [1]). A comprehensive description of rational
groups can be found in [15].

Theorem 2.1 ([15]) A group G is a Q-group if and only if for every x ∈ G of order
n the elements x and xm are conjugacy in G, whenever (m, n) = 1.

Equivalently, for each x ∈ G we must have
NG(< x >)

CG(< x >)
� Aut (< x >).

The following deep Theorem due to Fiet and Siet [2].

Theorem 2.2 Let G be a noncyclic simple group. Then G is a Q-group if and only if
G � Sp6(2) or O+

8 (2)′.

3 Results and discussions

By Definition Q-conjugacy class and Theorems 2.1 and 2.2, every Q-group is matured.
Thus we have the first result:

Result 3.1 Let G be a finite group, then G is Q-group if and only if it is matured.

In structure of finite Q-groups, we have the following important results, in fact this
is our new approach.

Result 3.2 Let G be a non-trivial Q-group. Then:

(1) If p is a prime divisor of |G|, then p − 1||G|.
(2) A quotient group G is a Q-group.
(3) The direct product (denotes ×) and wreath product (denotes wr) of a finite number

of Q-groups is a Q-group, and vice versa.

Proof For its proof see [15].

��
Result 3.3 Matured groups are always of even order.

Proof By the Results 3.1 and 3.2, part (1), it is obvious. ��
Example 3.4 Point group tetra platinum(II) is D2n dihedral group of order 2n. By using
the character table D2n is Q-group iff n = 1, 2, 3, 4, 6. Therefore, tetra platinum(II)
is unmatured if and only if n �= 1, 2, 3, 4, 6.

Example 3.5 The full non-rigid (f-NRG) group of 1,3,5-trimethyl-2,4,6-
trinitrobenzene is isomorphic to the group (Z2 × Z3)wr S3 of order 1296, where
Z2 and Z3 are cyclic groups of order 2 and 3, respectively and S3 is the symmetric
group of order 6 on 3 letters. By the Result 3.2 the group is unmatured, because Z3 is
unmatured.
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According to Theorem 2.2, the Lyons group Ly is an unmatured group. Now we
are equipped to compute all the dominant classes and Q-conjugacy characters for the
above group, using a GAP program [12].1

Theorem 3.6 The Lyons group Ly has thirty-nine dominant classes, among which ten
dominant classes are unmatured. Moreover, the unmaturated dominant classes of Ly
have orders 11, 21, 22, 24, 31, 33, 37, 40, 42 and 67 with the corresponding maturities
2, 2, 2, 2, 5, 2, 2, 2, 2 and 3, respectively.

Proof The dimension of a Q-conjugacy character table, CQ
Ly is equal to its corre-

sponding markaracter table for Ly. To find the number of dominant classes, at first,
we calculate the table of marks for Ly [13,14] via GAP system, see GAP programs in
[12] for more details. Hence, the markaracter table for Ly includes ten non-conjugate
cyclic subgroups(i.e., Gi ∈ SC SLy) of orders 11, 21, 22, 24, 31, 33, 37, 40, 42 and
67.

Therefore, by using the above table, the character table of Ly and definition of
dominant class, since |SC SLy | = 10, the dominant classes of Ly are A11 = 11a ∪
11b, Bn = na ∪ nb for n = 21, 22, 33, 37, 40, 42, C24 = 24b ∪ 24c for and D31 =
31a ∪ 31b ∪ 31c ∪ 31d ∪ 31e and E67 = 67a ∪ 67b ∪ 67c with maturity (i.e.,
t = ϕ(n)/m(H) ) 2, 2, 2, 2, 5, 2, 2, 2, 2 and 3, respectively. ��

The Lyons group Ly has ten unmatured Q-conjugacy characters. Furthermore, Ly
has ten unmatured Q-conjugacy characters χ2, χ4, χ5, χ18, χ20, χ21, χ22, χ23, χ30
and χ34 which are the sum of some irreducible characters. Indeed, if I rr(Ly) =
{ϕ1, . . . , ϕ53} is the set of all irreducible characters of Ly, then integer-valued charac-
ters are the following I rrQ(Ly) = {χ1, . . . , χ39}, such that:

χ2 = ϕ2 + ϕ3, χ4 = ϕ5 + ϕ6, χ5 = ϕ7 + ϕ8

χ18 = ϕ21 + ϕ22, χ20 = ϕ24 + ϕ25, χ21 = ϕ26 + ϕ27 + ϕ28

χ22 = ϕ29 + ϕ30, χ23 = ϕ31 + ϕ32, χ34 = ϕ47 + ϕ48 χ30 = ϕ39 + ϕ40

+ ϕ41 + ϕ42 + ϕ43

where all the rest of characters do not change. Therefore, there are ten column-
reductions (similarly ten row-reductions) in the character table of Ly [6,11].

We provide all Q-conjugacy characters of Ly in Tables 1 and 2.

1 which is available freely from: http://www.gap-system.org.

123

http://www.gap-system.org


182 J Math Chem (2014) 52:178–187

Ta
bl

e
1

T
he

in
te

ge
r-

va
lu

ed
ch

ar
ac

te
r

ta
bl

e
of

Ly
on

s
gr

ou
p

L
y

w
he

re
A

11
=

11
a

∪1
1b

is
an

un
m

at
ur

ed
do

m
in

at
cl

as
s

C
Q L

y
1a

2a
3a

3b
4a

5a
5b

6a
6b

6c
7a

8a

χ
1

1
1

1
1

1
1

1
1

1
1

1
1

χ
2

4,
96

0
−3

2
20

8
−8

0
−4

0
10

16
−8

4
4

0

χ
3

45
,6

94
11

0
25

3
10

26
69

−6
29

2
2

−2
4

χ
4

96
,3

48
25

2
71

4
12

−2
8

98
−2

42
12

0
0

−8
χ

5
24

0,
12

8
0

−1
,7

92
−6

4
0

12
8

28
0

0
0

0
0

χ
6

38
1,

76
6

−1
54

−7
70

67
14

−1
09

−9
14

11
−1

0
−6

χ
7

1,
15

2,
73

5
−4

17
2,

75
1

51
−1

23
5

10
63

3
−3

3
−1

χ
8

1,
53

4,
50

0
66

0
1,

98
0

11
7

16
12

5
0

−3
6

−3
3

2
6

χ
9

3,
02

8,
26

6
1,

24
2

5,
10

3
0

6
14

1
16

63
0

0
3

4

χ
10

3,
07

3,
96

0
−1

,1
12

5,
35

6
10

8
21

0
10

−2
0

10
4

1
0

χ
11

4,
22

6,
69

5
75

9
−2

09
11

5
35

−1
80

−5
11

1
3

3
4

5

χ
12

4,
99

7,
66

4
67

2
8,

06
4

−3
6

0
16

4
14

0
12

6
0

0

χ
13

5,
37

9,
43

0
−8

26
7,

29
4

31
14

55
5

14
−1

−7
0

6

χ
14

10
,7

58
,8

60
−3

08
−9

,6
04

−4
6

28
11

0
10

28
−1

4
−2

0
0

χ
15

11
,8

34
,7

46
−1

,0
78

−1
,0

01
10

6
14

37
1

−4
11

9
2

2
0

−4
χ

16
16

,9
06

,7
80

44
6,

29
2

−1
07

16
−9

5
5

20
5

−1
2

−6
χ

17
18

,3
95

,5
86

59
4

−1
6,

03
8

0
6

−3
9

11
90

0
0

−1
−4

χ
18

36
,7

91
,1

72
1,

18
8

16
,0

38
0

12
−7

8
22

−9
0

0
0

−2
−8

χ
19

19
,2

12
,2

50
33

0
−5

,2
70

49
22

−2
50

0
−6

9
−3

1
0

χ
20

42
,6

25
,0

00
−2

,2
00

5,
50

0
10

0
40

0
0

−1
00

20
−4

−2
0

123



J Math Chem (2014) 52:178–187 183

Ta
bl

e
1

co
nt

in
ue

d

C
Q L

y
1a

2a
3a

3b
4a

5a
5b

6a
6b

6c
7a

8a

χ
21

67
,8

28
,9

92
0

−2
9,

56
8

24
0

0
−1

,0
08

42
0

0
0

0
0

χ
22

54
,5

05
,4

40
3,

16
8

4,
75

2
21

6
0

44
0

−1
0

−4
8

−2
4

0
−4

0

χ
23

54
,5

05
,4

40
3,

16
8

−9
,5

04
−1

08
0

44
0

−1
0

96
12

0
−4

0

χ
24

28
,7

87
,2

20
−9

24
−2

,7
72

63
56

34
5

−5
−8

4
−9

3
0

−6
χ

25
29

,5
86

,8
65

38
5

15
,1

69
−3

2
21

−6
35

−1
0

49
8

−2
0

−1
χ

26
30

,7
39

,6
00

−1
,2

00
6,

04
0

−8
0

−4
00

0
12

0
0

6
−4

0

χ
27

33
,8

13
,5

60
2,

55
2

11
,3

96
2

8
−1

90
10

−2
8

2
−4

−3
0

χ
28

36
,8

87
,5

20
−1

,4
40

16
,7

52
12

0
20

20
48

−1
2

0
−2

0

χ
29

38
,7

34
,3

75
−8

25
−1

0,
62

5
40

15
0

0
15

0
−6

1
−5

χ
30

21
5,

55
0,

72
0

0
0

0
0

72
0

−3
0

0
0

0
0

0

χ
31

44
,1

59
,5

00
−1

,5
40

1,
54

0
−1

61
56

12
5

0
−2

8
−1

−1
0

6

χ
32

45
,6

48
,3

06
−9

90
−2

0,
79

0
−5

4
−3

4
18

1
6

42
−6

0
−3

4

χ
33

45
,6

48
,3

06
−9

90
10

,3
95

10
8

−3
4

18
1

6
−2

1
12

0
−3

4

χ
34

91
,3

88
,0

00
1,

76
0

7,
04

0
−8

8
0

50
0

0
12

8
8

−4
4

0

χ
35

52
,9

94
,6

55
−9

45
5,

10
3

0
−2

1
−3

45
−2

0
63

0
0

0
1

χ
36

53
,7

65
,6

25
−3

75
8,

62
5

−1
5

−3
5

0
0

−1
5

−1
5

3
4

−5
χ

37
56

,0
22

,9
21

29
7

−5
,1

03
0

−1
5

−2
04

−4
−6

3
0

0
3

5

χ
38

64
,9

06
,2

50
−5

50
−1

,7
50

5
−5

0
0

0
−7

0
5

−1
3

0

χ
39

71
,0

08
,4

76
92

4
−1

0,
16

4
−6

6
28

−2
74

1
−8

4
6

6
0

0

123



184 J Math Chem (2014) 52:178–187

Ta
bl

e
1

co
nt

in
ue

d

C
Q L

y
8b

9a
10

a
10

b
A

11
12

a
12

b
14

a
15

a
15

b
15

c
18

a

χ
1

1
1

1
1

1
1

1
1

1
1

1
1

χ
2

0
−2

8
−2

−1
0

0
−4

8
2

−2
−2

χ
3

0
1

5
0

0
5

2
−2

3
0

3
−1

χ
4

0
0

2
2

−1
2

−4
0

14
2

4
0

χ
5

0
−4

0
0

−2
0

0
0

8
−4

−2
0

χ
6

2
1

11
1

0
2

−1
0

5
2

0
−1

χ
7

−1
0

3
−2

1
−1

−1
3

1
1

1
0

χ
8

2
0

5
0

0
4

1
2

5
2

0
0

χ
9

0
0

−3
2

−1
3

0
3

3
0

−2
0

χ
10

0
1

18
−2

−1
−4

2
1

6
0

1
1

χ
11

1
−2

4
−1

0
−1

−1
−4

−9
0

1
0

χ
12

0
0

12
2

1
0

0
0

14
−1

−1
0

χ
13

−2
1

−1
−1

1
2

−1
0

19
1

−1
−1

χ
14

0
−1

22
2

2
4

−2
0

−4
−1

1
1

χ
15

0
1

−1
3

2
0

−1
2

0
−1

−4
−1

−1
χ

16
−2

1
9

−1
0

4
1

2
−8

−2
2

−1
χ

17
0

0
9

−1
0

−6
0

−1
12

0
2

0

χ
18

0
0

18
−2

0
6

0
−2

−1
2

0
−2

0

χ
19

−4
−2

−1
0

0
2

−2
1

1
5

−1
0

0

χ
20

0
−2

0
0

0
4

4
−2

0
0

0
2

123



J Math Chem (2014) 52:178–187 185

Ta
bl

e
1

co
nt

in
ue

d

C
Q L

y
8b

9a
10

a
10

b
A

11
12

a
12

b
14

a
15

a
15

b
15

c
18

a

χ
21

0
6

0
0

0
0

0
0

−1
8

0
−3

0

χ
22

0
0

8
−2

0
0

0
4

2
−4

2
0

χ
23

0
0

8
−2

0
0

0
4

−4
2

−4
0

χ
24

−2
0

1
1

0
−4

−1
0

3
3

−2
0

χ
25

3
1

5
0

0
−3

0
0

19
−2

−1
1

χ
26

0
−2

0
0

1
0

0
4

−1
0

2
0

0

χ
27

0
−1

2
2

0
−4

2
−3

−4
2

1
−1

χ
28

0
0

−2
0

0
−1

0
0

2
2

2
2

0

χ
29

3
−2

0
0

−2
3

0
1

0
0

0
0

χ
30

0
0

0
0

0
0

0
0

0
0

0
0

χ
31

2
1

5
0

0
−4

−1
0

−1
0

−1
0

−1
χ

32
0

0
5

0
0

2
2

−3
10

1
0

0

χ
33

0
0

5
0

0
−1

−4
−3

−5
−2

0
0

χ
34

0
2

−2
0

0
0

0
0

−4
−1

0
2

0
2

χ
35

−3
0

15
0

−1
3

0
0

3
0

−2
0

χ
36

−1
0

0
0

1
1

1
−4

0
0

0
0

χ
37

−3
0

12
2

−2
−3

0
3

−3
0

2
0

χ
38

4
−1

0
0

2
−2

1
3

0
0

0
−1

χ
39

0
0

−2
6

−1
0

4
−2

0
11

−1
1

0

123



186 J Math Chem (2014) 52:178–187

Table 2 The integer-valued character table of Lyons group Ly where Bn = na ∪ nb for n =
21, 22, 33, 37, 40, 42, C24 = 24b ∪24c , D31 = 31a ∪31b ∪31c ∪31d ∪31e and E67 = 67a ∪67b ∪67c
are unmatured dominat class

CQ
Ly 20a B21 B22 24a C24 25a 28a 30a 30b D31 B33 B37 B40 B42 E67

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

χ2 0 −2 1 0 0 0 0 −4 2 0 −1 2 0 2 2

χ3 1 1 0 1 0 −1 −2 − 1 2 0 0 −1 −1 1 0

χ4 2 0 −1 −2 0 −2 0 2 2 0 −1 0 2 0 2

χ5 0 0 0 0 0 −2 0 0 0 2 1 −2 0 0 0

χ6 −1 0 0 0 −1 1 0 −1 −4 1 0 0 −1 0 0

χ7 −1 0 1 −1 −1 0 −1 3 3 0 1 0 −1 0 0

χ8 1 −1 0 0 −1 0 2 −1 2 0 0 −1 1 −1 −1

χ9 1 0 −1 1 0 1 −1 3 0 0 −1 1 −1 0 0

χ10 −2 1 −1 0 0 0 1 0 0 0 −1 0 0 1 0

χ11 0 1 0 1 0 0 1 −2 0 0 0 0 −1 0

χ12 0 0 1 0 0 −1 0 0 −3 −1 1 0 0 0 0

χ13 −1 0 −1 0 1 0 0 −1 −1 0 1 0 1 0 0

χ14 −2 0 0 0 0 0 0 −2 1 0 −1 0 0 0 0

χ15 −1 0 0 −1 0 1 0 −1 2 0 0 0 1 0 0

χ16 1 −1 0 0 1 0 2 0 0 0 0 0 −1 −1 0

χ17 1 −1 0 2 0 1 −1 0 0 0 0 0 1 −1 −1

χ18 2 1 0 −2 0 2 −2 0 0 0 0 0 2 1 −2

χ19 2 1 0 0 −1 0 1 −1 −1 0 −1 0 0 1 0

χ20 0 −2 0 0 0 0 −2 0 0 0 0 1 0 −2 2

χ21 0 0 0 0 0 −3 0 0 0 0 0 0 0 0 1

χ22 0 −1 0 0 0 0 0 2 −4 0 0 0 0 1 2

χ23 0 2 0 0 0 0 0 −4 2 0 0 0 0 −2 2

χ24 1 0 0 0 1 0 0 1 1 0 0 −1 −1 0 0

χ25 1 0 0 −1 0 0 0 −1 2 0 0 0 −1 0 0

χ26 0 −1 −1 0 0 0 0 0 0 0 1 0 0 1 0

χ27 −2 0 0 0 0 0 1 2 2 0 0 0 0 0 0

χ28 0 1 1 0 0 0 0 −2 −2 0 −1 0 0 −1 0

χ29 0 1 0 1 0 0 1 0 0 −1 1 0 0 1 0

χ30 0 0 0 0 0 −5 0 0 0 1 0 5 0 0 −5

χ31 1 0 0 0 −1 0 0 2 −1 0 0 0 1 0 1

χ32 1 0 0 −2 0 1 1 2 −1 0 0 0 −1 0 0

χ33 1 0 0 1 0 1 1 −1 2 0 0 0 −1 0 0

χ34 0 −2 0 0 0 0 0 −2 −2 0 0 −2 0 2 0

χ35 −1 0 1 1 0 0 0 3 0 0 −1 −1 1 0 0

χ36 0 1 −1 1 −1 0 0 0 0 0 1 0 0 −1 1

χ37 0 0 0 −1 0 1 −1 −3 0 0 1 0 0 0 0

χ38 0 0 0 0 1 0 −1 0 0 0 −1 −1 0 0 0

χ39 −2 0 0 0 0 1 0 1 1 0 0 0 0 0 0
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